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No evidence of worsening Arctic springtime
ozone losses over the 21st century
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The Montreal Protocol, now ratified by all 198 members of the United
Nations, has proven highly effective at mitigating ozone loss and
protecting the ozone later. However, a recent paper1 in this journal
claims that large Arctic springtime ozone losses—driven by chemical
processes—could persist or even worsen until the end of this century
as a consequence of increasing levels of carbon dioxide. Herewe show
that such a claim is at odds with the extant literature on the subject,
including the latest and most sophisticated modelling studies, which
robustly indicate how increased levels of carbon dioxide cause higher,
not lower, ozone levels. Hence the alarmist message of that paper is
inconsistent with the current understanding of past and future ozone
trends.

Recall that the ozone layer protects the Earth’s surface from
harmfulUV radiation2. Hence, not long after the discoveryof the ozone
hole over Antarctica3, the Montreal Protocol was implemented to
regulate the production and usage of ozone-depleting substances
(ODS). As a consequence, ODS concentrations have started to
decrease in the late twentieth century4,5, and are expected to continue
decreasing over the twenty-first century6. The healing of the ozone
layer over Antarctica has already been reported7.

While stratospheric ozone depletion over the Arctic has been
much smaller than over the Antarctic8, every few years low ozone
concentrations are observed at high northern latitudes9–11. Strato-
spheric ozone losses in the polar regions result from the presence of
polar stratospheric clouds (PSC)12, which allow for the formation of
the highly reactive chlorine species directly responsible for ozone
loss13. From PSC estimates, a claim was made that Arctic ozone
minima in the last several decades have been getting worse as a
consequence of “climate change”14,15, but that claim has been
disputed16–18, and it was clearly shown that Arctic ozone minima in
recent decades are not related to increased levels of carbon dioxide,
but to the presence of ODS19.

It comes as a surprise, therefore, that a recent paper1 in this
journal (hereafter VDG) carries the title “Climate change favours large
seasonal loss of Arctic ozone.” In the last sentence of the paper, sum-
ming up the key findings, we read that “anthropogenic climate change
has the potential to partially counteract the positive effects of
the Montreal Protocol in protecting the Arctic ozone layer.” Taken at
face value, such a statement means that increasing levels of carbon
dioxide will be damaging to the ozone layer, specifically in causing
deeper ozone minima over the Arctic in springtime. Even more, it
suggests that the Montreal Protocol may no longer be sufficient in
protecting the ozone layer in the presence of accelerating climate
change. If this were the case, the findings of this paper would be the
cause of much alarm.

However, a careful reading of VDG reveals that the scientific
findings of thatpaper are actuallymuchnarrower than the sentencewe
have just cited claims. Specifically, the paper is concerned the narrow
question of chemical ozone loss in the spring season. While chemical
loss is an important process, which needs to be understood in its own
right, ozone levels are not controlled by chemistry alone. The atmo-
spheric circulation, in particular, plays a crucial role in determining the
levels of stratospheric ozone. When all the relevant process are
included, as they are in the state-of-the-art comprehensive chemistry-
climate models, there is no evidence that future ozone levels will
decrease in the coming decades, including over the Arctic in spring-
time, as we now explicitly show.

First, let us look at some of the very latest model projections. In
Fig. 1 (left panels), we have plotted the total ozone column in March,
averaged over the Arctic, from 1950 to 2100, for five models partici-
pating in the recent Coupled Model Intercomparison Project, Phase
6 (CMIP6)20. Unlike most CMIP6 models in which ozone levels are
prescribed a priori, these five models include interactive chemistry
schemes that actually compute the ozone concentrations from
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chemical reactions consistently with the time evolution of all natural
and anthropogenic emissions, and with each model’s temperature,
moisture, PSC surface area, and atmospheric circulation. In other
words, these models incorporate all the important processes that
affect ozone levels, not just chemical loss. We emphasise that the
Arctic ozone column in thesemodels are consistent with the observed
ozone column over the period 1979-2021, as one can see in
Fig. 1 (panels a and c).

The key point of that figure is that, in these five model, the total
ozone column in March shows no evidence of decreasing over the
twenty-first century, indicating that any potential chemical losses
are overwhelmed by other processes. In particular, every ensemble
member of every model shows a larger total ozone column in
the future than at present (panel a), and the same applies to the
ensembleminimum (panel b). And, as seen in the right panels, the total
ozone column is dominated by stratospheric ozone, whose con-
centrations increase in the coming decades with the waning of ODS.
We emphasise that Fig. 1 shows the SSP5-8.5 simulations, the scenario
with the largest CO2 increases among the current emission scenarios.
Clearly, large and sustained emissions of CO2 are not accompanied by
large Arctic ozone depletion in this scenario.

Second, and most importantly, the ozone projections of the
models in Fig. 1 are in no way surprising or exceptional. Those
models simply confirm the findings of a long series of multi-
model and single-model studies, with progressively more
sophisticated chemistry-climate models, that have unfailingly
shown that ozone levels will increase in the coming decades. Just
to cite the multi-model literature, starting from the most recent:
“ozone recovery,” as it is called, has been reported—over the
Arctic in springtime—by the CMIP6 models (Fig. 7 of ref. 20), by
the Chemistry-Climate Model Initiative (CCMI) models (Fig. 3 of
ref. 21), by the CMIP5 models (Fig. 6 of ref. 22), by the Chemistry-
Climate Model Validation project, Phase 2 (CCVal-2) models (Fig.
6 of ref. 23), and by the earlier CCMVal models (Fig. 8 of ref. 24).
The full list of peer-review papers showing that ozone levels will
increase over the 21st Century is much longer, and goes further
back in time, but these references should suffice.

Third, it is important to recall that all these studies have also
consistently shown that future ozone levels—over the Arctic inMarch—
will be higher for the higher emission scenarios: this is clearly shown,
for example in Fig. 2e of ref. 25. The claim in the abstract of VDG, that
“conditions favourable for large, seasonal loss of Arctic column ozone
could persist or even worsen until the end of this century, if future
abundances of GHGs continue to steeply rise”, which is based on an
proxy index of future loss, not the actual model output of ozone loss,
appears to contradict a large body of evidence from chemistry-climate
models, which have consistently shown how rising GHG will lead to
higher ozone levels, not the other way.

Finally, regarding the narrowquestion of seasonal chemical ozone
loss in coming decades: we do not understand why VDG decided to
construct a complex ozone loss potential (OLP) proxy index, which
involves many assumptions and free parameters, instead of simply
examining the actual chemical loss in chemistry-climate models such
as those in Fig. 1, which are perfectly capable of simulating the
observed ozone column over the Arctic in springtime. Onewould have
expected VDG to validate theirOLP index by comparing its predictions
against actual chemical ozone loss in such chemistry-climate models.
Needless to say, a careful analysis of the complex OLP index in VDG is
beyond the scope of this brief comment. We here limit ourselves to
two observations.

First, contrasting Figs. 8 and 9 in VDG, one can see that their claim
of future seasonal chemical ozone loss rests crucially on the strato-
spheric water vapour used to construct theOLP index. And yet, among
the very many assumptions underlying their OLP computation, VDG
opted not use the actual water vapour as computed in each model.
Rather, they employed a simple empirical formula meant to account
for the effect of methane oxidation on stratospheric water vapour, so
that the water vapour in the OLP index is inconsistent with each
model’s own water vapour.

Second, we note a more fundamental inconsistency in VDG’s
methodology. Their OLP index is based, largely, on stratospheric
temperatures which, obviously, are linked to ozone levels. Recalling
that in the majority of CMIP6 models ozone levels are prescribed, not
computed, one wonders: how can projected temperatures from

Fig. 1 | Arctic columnozone inMarch, infiveCMIP6models under SSP5-8.5, and
in observations. The top panels (a, b) show all the members of our multi-model
ensemble, and the bottom panels (c, d) the minimum over that ensemble. The left
panels (a, c) show the total ozone column, the right panels (b, d) the stratospheric
column alone. For the period 1950–2014we haveplotted the historical simulations;

for the period 2014–2100, the SSP5-8.5 simulations. The model names are given in
the legend, followed by the corresponding number of simulations shown for the
historical and SSP5-8.5 portions, respectively, in parentheses. The solid grey and
dashed black lines show the NIWA-BS27 and MERRA228 reanalyses, respectively. All
ozone columns are here averaged over the Arctic, defined as the region 60∘−90∘N.
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models in which ozone is prescribed be used to make projections
about ozone itself? This leads to an apparent contradiction: the ozone
levels prescribed in most CMIP6 models increase over the twenty-first
century20, and yet those same models are telling us that large future
seasonal chemical ozone losses “will persists or even worsen until the
end of this century,” if we are to believe VDG. It has been shown that
current chemistry-climate models—in which ozone levels are com-
puted consistently with each model’s temperature, circulation, and
anthropogenic emissions—are able to capture the observed trends in
stratospheric temperatures26. If, therefore, one felt the need to know
whether future seasonal chemical ozone losses will differ frompresent
ones, examining the model output from chemistry-climate models
would be superior to constructing an inconsistent proxy OLP index.

In any case, the key point we would like to emphasise is that
chemical ozone loss is only one part of the ozone story. If one is
concerned about societally relevant impacts, the actual ozone con-
centration (not just the chemical loss) is what really matters. We
reiterate that chemistry-climate models robustly project that strato-
spheric ozone concentrations will increase in the future, both globally
and over the Arctic, and that they will increasemore in the presence of
higher levels of CO2 (this has been termed “super-recovery”). And, it
should be abundantly clear, the cause of this future ozone increase is
the continued reduction of ODS thanks to the Montreal Protocol,
signed in 1987 and now ratified by every single member country of the
United Nations.

Data availability
Model output for the five CMIP6 models shown in this paper is avail-
able from the World Climate Research Programme at https://www.
wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (last access: Nov 2022).
The MERRA2 ozone reanalysis data are available from the Goddard
Earth Sciences Data and Information Services Center at https://disc.
gsfc.nasa.gov/datasets?project=MERRA-2 (last access: Nov 2022).
Version 3.4 of the National Institute of Water and Atmospheric
Research-Bodeker Scientific (NIWA-BS) combined TCO database is
available at http://www.bodekerscientific.com/data/total-column-
ozone (last access: Nov 2022).
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